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Abstract

In this report, we target to solve a challenging problem— the conditional image
generation on fine-grained classes. We instantiate this framework on a state-of-the-
art image generation network, SAGAN [37]], which introduces the self-attention
mechanism into GAN training. The proposed model contains three key components:
the conditioning augmentation module, the category discrimination module and
the latent reconstruction loss. We evaluate our methods on two standard fine-
grained dayasets, Caltech-UCSD Birds (CUB) [31] and Stanford Dog (DOG)
[L6] dataset. Experimental results indicate that by introducing these auxiliary
modules, our proposed method outperforms the SAGAN baseline on both dataset
quantitatively and qualitatively. Additional ablation studies show that all individual
components contribute to the full model. We have also discussed the potential
research directions for the proposed framework.

1 Introduction

Image generation has been widely studied for decades. It developed quickly in the past few years
with the thriving of deep learning and many interesting applications of it have emerged, such as
generating a photo-realistic image given the sketch drawn by the user. Not only do people care about
the quality of the image generated, but they also care about their control over the content, or the
so-called conditional image generation. These conditions can sometimes be very fine-grained. For
example, a user may query to generate a car of a specific brand, or a Chihuahua instead of a general
dog. In these cases, the general labels are not enough and fine-grained class labels are needed.

The previous works on image generation can mainly be categorized into two sub-classes, i.e. uncon-
ditional image generation [37,[15] and conditional image generation [4} 20, 22| 27]]. Unconditional
image generation, although can genrate with diversity, has little control over the semantic properties
of the images being generated [35]. While conditional image generation is much more powerful. It
can model a conditional distribution of images over either class labels[4]], sketches[14]], low-resolution
images[17], or even video frames[24]. In this work we mainly study the image generation conditioned
on class label, which is the simplest case[21]].

Conditioning on fine-grained labels introduces additional problems. The fine-grained labels are
expensive to get in general, as they sometimes require the human labelers to possess expert knowledge
in order to distinguish the sub-classes accurately, which can be very similar in their appearances.
Therefore, the numbers of labeled images are often limited [31} [16]]. This falls into the realm of
few-shot learning [28| 18, [23]], where the training set only consists of several images for each class.
This problem is especially challenging since the image generation networks heavily rely on the
quantity of training data [4]. Several methods based on meta learning or transfer learning have
been proposed to tackle this problem [32} 28| [18]]. In this project, we adopt a different perspective:
designing a robust image-generation architecture that can be applied with few-shot fine-grained
settings.

Preprint. Under review.
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Figure 1: Pipeline of the proposed model. (a) the baseline image generation network; (b) our proposed
conditional fine-grained image generation network. We added a Conditioning Augmentation block as
the generator inputs, an additional classification loss, and an additional latent vector reconstruction
loss.

Inspired by several recent papers, we propose a novel approach to solve the conditional image
generation problem on fine-grained classes. We tested our method on two fine-grained dataset and
showed that our best approach outperforms a baseline that achieves the state-of-the-art performance
on ImageNet [7]. In the midway report we found that introducing an extra classification loss into
the discriminator helps improve the quality and diversity of the image being generated. We further
show in this report that adding a conditioning augmentation layer as the generator input and adding a
reconstruction loss for the noise vector further boost the performance. We show both qualitative and
quantitative results and do extensive ablation studies. The pipeline is shown in Figure|[T]

2 Related Work

Image Generation There are a wide variety of image generation methods. A certain category is
based on auto-regressive methods, such as fully visible belief network. One impressing work of this
category is PixelCNN [29]], which models the image generation task as a sequential sampling task,
and it models the cognitional distribution of a pixel on the pixels that have already been generated, in
a raster scan order.

Recently, with the fast development of deep neural networks, conditional image generation models
have shown promising results for numerous tasks. Image-to-image translation tasks such as sketches
— images[[14]], low-resolution images — high-resolution images[17]], or even video frames — full
videos[24]]. label-conditioned models [4] have also been shown as a powerful tool for generating
images of a specific category.

The most straightforward way to measure the quality of the image being generated is measuring the
log-likelihood on the test set. While some methods have a tractable likelihood [22} 29 [26]], a large
proportion of image generation methods are based on Generative Adversarial Networks (GAN), for
which the log-likelihood is hard to measure. Therefore people use other evaluation metrics to mimic
human evaluation [39], such as Inception score (IS) [25] and the Frechet Inception distance (FID)
[9]. Qualitative evaluation is also commonly used, for example in AMT test [14]], where Turkers are
asked to choose between a real image and a fake one.

Generative Adversarial Networks (GANs) Another popular image generation regime is based on
GANSs. GANs are known to have fater evaluation speed (as only one forward pass is needed), and is
able to capture high-frequency details, and can generate photo-realistic images under high resolution
[4]. The GAN training procedure corresponds to a minimax two-player game between a generator
(G) and a discriminator (D), both of which are often parameterized as deep neural networks :

mén mgx V(D,G) = Egnpy (@) [log D(x)] + Eszz(z)[log(l — D(G(z)))] (1)



The training of GANs are known to be notoriously unstable. And they are also suffering from mode
collapse, when the model tends to ignore the diversity of the input noise vector. Following up works
on GAN such as WGAN [1] and WGAN-GP [[11]] studies on how to make the GAN training process
stable and robust. Other works such as BicycleGAN [40] focuses on the diversity of the generated
images by enforcing a by-directional mapping from embedding to image.

Attention Mechanism The attention mechanism is first introduced in [2]]. Despite being invented
to solve the long-range dependencies in natural language processing (NLP) problems, it has also
been widely applied in the field of computer vision [19}37,136]]. It is known for its computational
efficiency, and is used in the tasks that requires reasoning about global dependencies.

The attention layers usually consists of three separate "heads", namely Queries(Q), Keys(K) and
Values(V). Each of the head is a convolution layer with 1 x 1 kernel. The input features are transformed
by the heads and the output feature is computed as the following:

Attention (@, K, V) = softmax (QKT) \% (2)
C Vi

Where @, K,V are the features transformed using the corresponding head, and dj, is the embedding
dimension of the Keys.

Fine-grained Image Generation With the development of image generation techniques, a more
challenging task, fine-grained image generation, has raised attention from public [34]. This task aims
at synthesizing images on fine-grained categories such as faces of a specific person or objects in a
subordinate category. CVAE-GAN [3] first combines a variational auto-encoder with a generative
adversarial network under a conditional generative process to tackle this problem. It achieves this
goal by varying the fine-grained category fed into the resulting generative model. Several following
generative networks also work on this sub-area [37]. The main challenge of this task is to detect and
keep the key distinguishing features of each category, as well as dealing with the problem that only
a limited number of samples are available at training time, which are also the main problems this
project focuses on.

Few-shot Learning Few-shot learning studies the cases when target samples are limited [32]]. These
kind of methods are usually combined with transfer learning and meta learning since most of the
time we need special algorithm design to deal with few-shot problems [28]]. In the recent years,
few-shot learning has shown its great ability of generalization for several fully supervised tasks
such as classification and segmentation [8| [23]]. Most recently, researchers also tried to combine
few-shot learning with generative models. Wang et al.proposed to use a "hallucinator” to generate
imaginary samples to help with few-shot classification [33]. MetaGAN [39] could help most few-shot
learning problems by introducing fake images as a new category. Generative version of Matching
Nets (GMN) extended the capability and robustness of the Matching Nets [30]. Recently, Liu et
al. proposed FUNIT [18], a framework performing multi-domain image-to-image translation in the
few-shot setting to ease the need for huge datasets in this task. They adopted a generator that takes
in both a content image and a small set of style images, as well as a multi-class discriminator that
outputs scores for multiple domains. In the inference time, the generator is fed with a content image
and a small set of style images of a novel domain, and their results show that the generator can
achieve the image translation to unseen domain well. However, the time and resources required to
train their network is prohibitive.

3 Methods

We first explain the SAGAN [37]] on which our method is based in section[3.1] In section[3.2)and
section [3.3| we introduce several sub-modules that we adapted from. And finally in section [3.4] we
propose a novel method.

3.1 Baselines

In this report, we use the Self-Attention GAN (SAGAN) [37] as the baseline, which is a widely used
unconditional image generating network and is proved effective and robust. It achieved the state-
of-the-art image generation results on ImageNet [7]. SAGAN itself is originally an unconditional



generative network, but the authors have also made some initial implementations towards conditional
image generatiorﬂ The resolution for the synthesized image is 64 at primary setting.

For the Generator, SAGAN is based on the resent-18 [12] backbone. It additionally inserts one self-
attention layer between the original convolutional layers, where the features are firstly transformed
into feature space f and g by linear projection, followed by
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and f3;; indicates the extent to which the model attends to the it" location when synthesizing the ;%"
region.

As for conditioning on the class labels, the authors use conditional batch normalization modules [6] to
replace the original batch normalization modules [[13]]. The conditional batch normalization module
has the following form:

Fi,gw,h —E5 [F,Cm']
VVarg [F....]+€

where . and (. are two parameters controlling the mean and variance of the normalization.

CBN (Fi,c7h,w | Ye, Bc) =Ye + Bc (4)

The Discriminator is also a multi-layer CNN followed by two fully connected layers. The adversarial
loss function is the hinge loss:

ghinge (y) = maX(07 1—t- y) (5)

3.2 Conditioning Augmentation

To solve the sparsity of training data problem in the few-shot learning setup, we adapted a method
from a recent paper StackGAN [38]]. In this paper, the authors aim to solve the text to image translation
problem in a generative adversarial manner. Specifically, they use a stack of two generators: the first
one focuses on capturing the low resolution information, while the second one refines the output of
the first one.

In StackGAN the authors state that the limited number of training pairs results in sparsity in the text
conditioning manifold. This is similar to the problem we are facing, where the number of training
examples per class is very limited (on average 30 examples per class in the CUB dataset [31], in
contrast to 500 examples per class in ImageNet [7]).

The author resolves this problem by introducing Conditioning Augmentation (CA), which encour-
ages smoothness in the latent conditioning manifold. This technique not only makes the training of
GAN easier, but also increases the diversity of the generated image.

Specifically, the text embedding ¢ (or class embedding in our setup) is fed into a MLP to produce
a mean and a diagonal variance matrix. An embedding vector is then sampled from the predicted
Gaussian Distrinution A (1 (¢¢) , X (¢¢)). This variational setup introduces smoothness in the
embedding space, and an additional loss term is applied to encourage the distribution to be similar to
the standard Gaussian Distribution:

D (N (1 (1), £ (1)) [N (0, 1)) (6)

The sampled embedding vector is further concatenated with the noise vector, and they together serve
as the input to the generator. Figure [2]illustrates how conditioning augmentation works.

3.3 Discriminator Design

In order to enable the unconditional image generation model to work under the conditional fine-
grained generation scenarios, we propose two modifications on the discriminator.

'See https://github.com/brain-research/self-attention-gan
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Figure 2: The Conditioning Augmentation layer. Figure directly adapted from StackGANs [38]]

Firstly, We add a classification output for the discriminator to explicitly force it preserves categorical
information. The classification loss is used to update both generator and discriminator. We use cross
entropy loss function for such a category loss.

Furthermore, inspired by Chen et.al.[5], we introduce an identity regularizer to ensure that the
synthesis images preserve the identity for the latent noisy input z so that can better keep the diversity
of the synthesized images. We add an extra output layer that predicts z’, which is the reconstruction
of z. Then we minimize the difference between the real and the reconstructed input as

Li(G H)=E,||z— 2?2 (7)

Here H is the hidden latent discriminator which shares the majority of the convolution layers of the
discriminator D.

The adversarial loss is the hinge loss, same as original SAGAN design.

3.4 The Proposed Model

The proposed model is mainly based on the SAGAN [37]]. We made the following 3 changes: 1)
we added a conditioning augmentation block at the generator inputs 2) we added an additional
classification loss 3) we added an additional latent vector reconstruction loss. The overall pipeline is
shown in Figure[I]

4 Results

4.1 Implementation Details

Our code is based on the Pytorch Implementation of the SAGANEI The Generator is based on resnet-
18 [12] with one self-attention block inserted. The Discriminator has a similar resnet architecture. As
for the conditioning augmentation layer, we pass the one-hot label into an embedding layer, followed
by a fully connected layer and a leaky-ReLU activation, which is turned into mean and log-stddev of
the Gaussian Distribution. We train each model for 50k steps, which takes about 8 hours on one RTX
2080Ti GPU.

4.2 Datasets

We conducted our experiments on two fine-grained datasets: Caltech-UCSD Birds (CUB)
dataset [31]] and Stanford Dog (DOG) dataset [16]]. CUB dataset contains 6,033 images that belongs
to 200 classes. DOG dataset contains 20,580 images belonging to 120 classes, most of which are
from ImageNet [7]. Sample images from these two dataset are shown in Figure[3]

4.3 Evaluation Metrics

In this report we use the following two metrics to measure the quality of the images:

Inception Score is an objective metric for evaluating the quality of generated images. It seeks to
capture both the quality and diversity of a collection of generated images [25]. The first term of IS
mainly measures the quality of the generated images and the second term measures the diversity.

’See https://github.com/voletiv/self-attention-GAN-pytorch
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Figure 3: Sampled images from CUB and DOG dataset. Left: sampled images from CUB dataset;
Right: sampled images from DOG dataset. Images in the same column belong to the same category.

FID Score is calculated by computing the Fréchet distance [9]] between two Gaussians fitted to
feature representations of the Inception network. It measures the quality of generated images and
robust to noises.

4.4 Primary Results

We first compare our model with the baseline— SAGAN model. For the two compared models, we
sampled 20 images for each class during all the experiments. We also report the results for real
images which is the performance upper bound. The results for our full model and the baseline model
on the two datasets are reported in Table [T}

CUB DOG
Model | Real Images  SAGAN Ours Real Images  SAGAN Ours
IS (1) 4.56 £0.58 3.21+0.42 3.81+0.50| 7.36 +0.78 2.14+0.06 3.64 +0.32
FID (}) 0.0 132.70 74.05 0.0 264.83 221.76

Table 1: Inception score and FID for SAGAN baseline and our model on CUB and DOG dataset.
means larger is better and | means smaller is better. Compared with SAGAN, the proposed model
has a significantly better results for both metrics, indicating the design of our model is effective.

Furthermore, to have a comprehensive understanding of our model, we also sampled some generated
images and compared the qualitative results with the baseline model, and the visualization is shown in
Figure[d Besides, Figure 5] further shows the generated images of some randomly picked categories.
From these figures, we can see that the proposed model can generate significantly higher-quality
images and it can maintain the category information for the challenging fine-grained classes.

SAGAN

Figure 4: Comparison of the baseline method (SAGAN) and the proposed method. Results are shown
on both DOG and CUB datasets.
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Figure 5: The image generated by our proposed method. For each class, one randomly picked real
image is shown on the left, and one fake image is shown on the right. This figure shows that our
model can maintain category information for fine-grained classes.

4.5 Ablation Studies

To understand the role of each components, we add each proposed components separately to the
baseline model and measured their performances. SAGAN is the baseline model; SAGAN-cls is
the baseline model equipped with the individual category discrimination module; SAGAN-latent is
the baseline model equipped with the individual latent discrimination module; SAGAN-cat is the
baseline model with a concatenation input embedding strategy; and SAGAN-ca is the baseline model
equipped with the conditional augmentation embedding strategy. The quantitative results of these
comparable models are reported in Table[2] We only did ablation studies on the CUB dataset where
each class contains less images and we consider it a more challenging scenario under our setup.

Model SAGAN  SAGAN-cls SAGAN-latent SAGAN-cat SAGAN-ca Ours

IS¢ [3214+£042 3.37£0.47 3.21£0.55 3.27£0.06 3.29£0.10 3.81+0.50

FID () 132.70 104.66 125.25 105.80 102.13 74.05
Table 2: Inception score and FID for different variance of the proposed models. 1T means larger is
better and | means smaller is better. Compared with baseline, each individual component can bring
improvements for both metrics.

Class Label Embedding Strategies We compare the influence of different class label embedding
strategies on the quality of the generated images. SAGAN-cat has the same embedding layers as
SAGAN-ca but we only take the mean output and ignore the variance part. We compare SAGAN,
SAGAN-cat, and SAGAN-ca qualitatively and quantitatively. Results are displayed in Table [2]and
Figure[f] Results show that the variational method helps generate higher quality images.

SAGAN-cat

Figure 6: Sampled images generated by SAGAN, SAGAN-cat, and SAGAN-ca. The image gener-
ated by SAGAN-ca has the highest quality, whereas the images generated by the other two methods
have obvious blurring and artifacts.

Discriminator Auxiliary losses By comparing the performance of SAGAN-cls and SAGAN-latent
in Table[2] we conclude these two components can both improve the performance of the basic SAGAN
model.



Moreover, when further visualizing the synthesized images of the baseline model and these two
models, we observe an interesting fact. We find although the basic SAGAN model can do conditional
image generation, it seems that it only remembers some frequent patterns of the training images
and the whole set of synthesized images is lack of diversity. However, when we introduce the latent
discrimination module, the model can generative images of higher diversity. The compared images
are shown in Fig.[7]

Figure 7: Generated images from SAGAN and SAGAN-latent. The basic SAGAN only remembers
some common patterns of the training images. In comparison, by introducing latent discrimination
module, the generated images are of high diversity.

5 Discussion and Analysis

Section ] shows the comparison of our model and the baselines. We show that our model is able
to generate photo-realistic images with high quality and diversity on two challenging fine-grained
dataset. Under the matrices of FID and IS, we show that our method outperforms the baseline by
a large margin. Ablation studies on CUB dataset further show that the modifications we made all
contribute to the good performance. Furthermore, the extra layers we added are light-weighted and
the computational overhead can be ignored.

We found our model to be limited in the following aspects: 1) The proposed method requires the
training image to be center-cropped and with high quality. We observed that the model failed catas-
trophically on several classes in the DOG dataset where the training samples have noisy backgrounds
(e.g. a man holding the dog) 2) The natural images has more attributes that can be disentangled. For
example, the pose, size and background of the bird can also be used as conditions, so that we have
more control over the content of the image being generated, which will further broaden the potential
applications of the image generation methods. 3) Different embedding strategies have inconsistent
effects on these two datasets, which indicates a more effective and robust conditional embedding
strategy is needed to explore for a better performance of the proposed architecture.

Observing the above limitations, improving the model’s robustness to noise by forcing the model to
focus on the foreground and enabling the model to be conditioning on more attributes are clear future
directions.

6 Conclusion

In this project, we mainly explore the problem of conditional image generation with few-shot fine-
grained categories. This is a challenging problem and we propose a novel solution to it. Based on
unconditional image generation network, we add several effective modules including conditioning
augmentation module, category discrimination module and latent reconstruction loss. We instantiate
our model with an effective GAN model, SAGAN, and further evaluate our method on two standard
fine-grained dataset, CUB dataset and DOG dataset. Both quantitative results and qualitative results
indicate the proposed model can generate better images and ablation studies show that all individual
components contribute to the full model. We will further refine each components to improve the
robustness and performance of the proposed model with more challenging settings.
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