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Abstract

The real robot control system inevitably faces noise
interference problems, which greatly limit their perfor-
mance in advanced manufacturing processes. In this
project, we target at trajectory tracking problem with
robot arms at noisy environment. We tried different de-
noise methods together with different controllers to im-
prove the accuracy, robustness and response speed of
our control system. We built a well-performing system
robust with additional noises and evaluated its perfor-
mance in different settings with simulation. Further
analyses and detailed design of our system are also
provided.

1. Introduction

Robotic system control plays an important role in
many advanced manufacturing processes. Such sys-
tems have the potential to improve speed, robustness
and precision for these processes. In real world, how-
ever, noise always exist due to the model design and
sensor measurements [6]. If not addressed properly,
the noise can greatly harm the control system perfor-
mance. Hence in this project, we focus on robot arm
trajectory tracking task and hope to explore possible
approaches to address or mitigate the problem of noise.

The robotic arm trajectory tracking problem is mod-
eled as follows: Given a set of desired time-position
trajectory pairs, we want to control a robot manipula-
tor to follow the desired path as close as possible. The
task is usually called path following if we only pay
attention to the closeness of two set of points. When
we considered the timestamp, the problem is called
trajectory tracking. There has been tons of study
for both problems with different control strategies and
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robot types [7, 8, 2, 9]. In this paper we do not dif-
ferentiate these two terms and we provide qualitative
results for both in Section 3.

2. Model

Given a set of desired trajectory points for end-
effector, we first use Inverse Kinematics (IK) to get
the desired poses. We then use a control system based
on the robot arm Equations of Motions (EOM) to find
the torques for each joint. Finally, we use Forward
Kinematics (FK) to get the actual trajectory. Besides,
sensor noise would inevitably exist and we will model
them accordingly. We will introduce each individual
model and show the overall pipeline in the rest of this
section.

2.1. Forward Kinematics

We use Screw Theory [3] to apply forward kine-
matics and get the position based on the equation:
gst(0) = €899, (0) , where é is the joint twist, 6 is
the joint angle and ¢4 (0) is the transformation matrix
of the joint at zero configuration.

2.2. Inverse Kinematics

We implement inverse kinematics by using the fol-
lowing equation iteratively:

6=Jtv =gt {p] i1 =0+ Atx0 (1)
RE’I"’)"OT
where J is the Geometric Jacobian matrix, and 7

means pseudo inverse. Perror and Reppor measure the
error of current position and orientation.



2.3. Equations of Motions
We calculate M (6), C(6, ) and N (6, §) with:
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2.4. Decentralized Control

Decentralized control system fine tunes the coeffi-
cient of controller for each 6§ separately.

System Modeling and PID Controller Tuning
The diagram for parameter tuning stage is shown in
Appendix. We use PID control for this model and
made some approximations. The robot EoMs are given
by T = M@O+CO+N. If we ignore the term C' and N
and treat it as a linear system, we could use a PID con-
troller at each individual joint and tune each controller
parameters.

Decentralized Control with Gravity Compensa-
tion We then run control simulation with our tuned
controller. Please refer to the appendix for the dia-
gram of the whole system. We estimate the torque for
countering gravity and compensate for it.

Adding Sensor Noise We add AWGN to # and have
tried several de-noising methods such as low-pass filter
and observer. Detailed are discussed in Section 4.

2.5. Centralized Control

We implement Inverse Dynamic Control as central-
ized control method. From the robot arm EoM we
know that

T=DM()6+C(0,0)0 + N(6) (4)
= M(0)z +Q(6,6) (5)

We use Q(6, 0) as feedback linearization term and z
is the feedback signal.

For the feedback error compensation part we use
a PID controller. For the centralized control diagram
and choice of the control parameters please refer to the
Appendix.

2.5.1 Centralized Control with Sensor Noise

We assume we only have the observation of joint an-
gles, f. And this observation is not perfect. We model
the sensor noise as an Additive White Gaussian
Noise Channel (AWGN Channel). We implemented
different denoising strategies and describe them here.

Butterworth Filter

Butterworth Filter is a kind of filter that aims to get
as flat as possible frequency response in passband. Its
frequency response is:

G2
G(w)=|H(jw)? = ——-  (6)
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where G is the DC gain (which is set to 1), w, is the
cutoff (-3dB) and n is the filter order.

Luenberger Observer Since we only have access
to the joint angle 6 and we are interested in estimat-
ing joint velocity 6 which is required in feedback lin-
earization, we need to find a way to estimate it.

Luenberger Observer is a practical way to estimate
the system internal state given its input and output. It
runs a forward dynamics simulation model in parallel
to the physical robot. This estimation results can never
be perfect because of sensor noise and model inconsis-
tency. So we uses the error between observed output
and simulation output to construct a feedback signal
for the simulation model.

In its simplest form we have:

(N

2.6. Motor Noise

There are always discrepancy between desired
torque and output torque for eclectic motor. Reasons
can be mechanical (worn bearings, a bent shaft, etc.)
and electrical (phase imbalance). We model this mo-
tor noise as an AWGN channel and study its effect on
the stability of our control system.

3. Experiment Results

In this section, we evaluate the control models de-
veloped in section 2. We used MATLAB Simulink to
build and test our control systems and Robotics Tool-
box to build the physical arm robot. We build two



Metrics | Decentralized Centralized
HD 48.61 4.86
FD 28.52 5.06

MSE 695.09 53.04

Table 1: Comparison of Control Strategies

physical model of the robot arm including one with
estimated parameters for controller test and the other
with real parameters for simulation.

We also evaluate the robustness of the control sys-
tem by adding noises. We mainly consider two source
of noise: sensor noise during measurement and motor
noise, which models the discrepancy between desired
torque and actual torque.

3.1. Qualitative Results

We compare the real trajectory of our best model
with the ground-truth. Please find more results in the
Appendix.

3.2. Quantitative Results
3.2.1 Evaluation Metrics

For the quantitative evaluation, we measure the close-
ness of the real trajectory to the desired one. We apply
three commonly used metrics: the Hausdorff Distance,
the Fréchet Distance and Mean Squared Error.

Hausdorff Distance (HD) is a method to measure
how far apart two subsets of metric space are from
each other[5]. The one-way modified Hausdorff Dis-
tance [4] is defined as:

di(X,Y) = sup inf d(z,y) (8)
reX YEY

Fréchet Distance (FD) measures the similarity be-
tween two curves [1] considering both location and
timestamps along the curves:

dp(X,Y) = inf max {d(X(a(t)),Y(6(1))} (9

a,Bt€0,1]

a(t) and S(t) are the parameterization that connect
two corresponding points from the two curves.

Mean Square Error (MSE) measures averaged Lo
distance between the two trajectories.

3.2.2 Results

Table 1 shows the performance of centralized model
compared with decentralized model with zero noise.

Metrics | w/o noise observer filter
HD 4.86 12.05 14.06
FD 5.06 12.59 14.52

MSE 53.04 93.39  72.56

Table 2: Comparison of Noise Filtering Methods

As we can see, the centralized model is significantly
better. Table 2 shows the performance of different de-
noising strategies.

3.2.3 Ablation Studies

We do ablation studies to find how the choice of indi-
vidual parameters can affect the system performance.
Please find the ablation studies in the Appendix.

4. Discussion
4.1. Decentralized Control

Estimated v.s. Real Parameters Fig. 1 and Fig. 2
compare the result from the estimated parameters and
real parameters. The overall trajectory in Fig. 2 works
well but has some skews at the beginning. We also
further monitor the individual 6 error, which is shown
in Fig. 6. 6 and 6, have the largest error which is
maybe because these joints are more meticulous and
more sensitive to the estimation errors.

Noise Control The de-noising process failed. We
analyzed the reasons in the Appendix.

4.2. Centralized Control

We mitigate the additional noises for the centralized
control system and find:

e PID controller could reduce the skew of the tra-
jectory since the integral component restrains the
progression of errors.

o first-order Butterworth filter could best filter out
the noisy components. Lower cut-off frequency
generally helps since the configuration of robot
arm changes slowly.

e Luenberger Observer helps mitigate the noise by
smoothing the signals. But the performance is not
good under large-noise conditions.
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A. Design Details
A.1. Decentralized Control

Fine-tune Stage The model design of fine-tune stage of decentralized system is shown in Fig. 1.
Overall system
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Figure 1: Fine tune stage of decentralized control model.

For the multiply unit in the figure, we first model the mass matrix M (6) as M () = M + AM (). And we
calculate M by averaging the mass matrix over the whole trajectory. Then the multiply unit is initialized with m;,
the i** diagonal element of M.

And the tuned parameters for PD controller are:

k, = [15.747,8.699, 5.498,10.484, 5.422, 8.827, 0.419) (10)
k; = [0.400, 0.400, 0.400, 0.400, 0.400, 0.400, 0.400] (11)
kq = [10.478,3.258,2.317,5.251,1.967, 1.988, 1.952] (12)

Simulation Stage We send the torque combined with a gravity torque estimated by the given parameters to the
real manipulator. The model design of this stage is shown in Fig. 2.
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Figure 2: Simulation stage of decentralized control model.



Noise Control
All the de-noise modules working well for centralized control system failed in de-centralized control system.
We analyzed and thought the reasons may be related to:

e The compensated gravity torque and coefficients of PID controller are calculated by the estimated parameters,
which is not precise. The error could be further amplified when we add noises.

e We have several approximations for the total torques. These approximations may not hold with additional
noises.

e The parameters of decentralized control is tuned individually so that they are sensitive to noises and the
change of each parameter will have a great influence on the final result.

e The parameters of the de-noise filters may not reach the best.

A.2. Centralized Control
A.2.1 Control Diagram
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Figure 3: Centralized Control Diagram

A.2.2 Control Diagram

For the PID controller, we use K, = 10, Kp = 10, K; = 1. We use Butterworth Filter with cutoff frequency
20H z and order n = 1 for the Observation Filter.

B. Qualitative results
B.1. Decentralized Control

Figure 4 and Figure 5 shows real trajectory for the decentralized model with : 1) manipulator with estimated
robot model; 2) manipulator with ground-truth robot model.
Figure 6 shows the individual error for each . We could see the second and first joint have the largest error.



Figure 4: Control with estimated model parameters Figure 5: Control with real model parameters
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Figure 6: 6§ error for decentralized model.

B.2. Centralized Control

Figure 7 shows the visualization results of centralized control in different setting. Figure (a) is the real trajectory
in noise-free situation, which is close to the desired trajectory. When we add noise to the system, we use either
Luenberger Observer or Butterworth filter to mitigate its impact. Figure (b) shows the results using Luenberger
Observer with sensor noise while Figure (c) using Butterworth filter. We could see that the trajectory of model
using Luenberger Observer in (b) is more stable than using Butterworth filter in (c). We then add motor noise to
the system and the result of model using Luenberger Observer in such situation is shown in figure (d).

C. Ablation Studies

C.1. PD controler v.s. PID controler

If we only use PD controller, we find that the system will have accumulated errors but is unable to eliminate it,
so we decide to use PID controller instead to address this problem. The quantitative results are shown in Table 3,
we could see that the performance of the system is greatly improved after we add the integral component to the
controller. We also visualize the trajectories to see the difference in Figure 8.



(a) Noise free

(c) Sensor noise added and using Butterworth filter (d) Motor&sensor noise added and using Luenberger Observer

Figure 7: Visualization results of the centralized control in different settings

Metircs PD PID
HD 49.64 12.05
MSE 1824 93.39

Table 3: The performance difference when considering motor noise

Filter order 1 2 3
HD 12.05 27.58 doesn’t
MSE 93.39 143.25 converge

Table 4: Comparison of Filter Order

C.2. Choice of Butterworth Filter Parameters

The frequency response of Butterworth filter is:
G

e 2n
1+ ()

where w, is the cutoff frequency and n is the filter order. We experiment on the choice of w. and n. Results are
shown in Table

As we can see from the results, The filter works best with cutoff frequency w, = 20H z and order n = 1.

As for the cutoff frequency, a lower w, would filter out more noise power and increase SNR. But it also should
not be set too low as we want all signal power to pass the filter.

As for the filter order n, typically a higher order Butterworth filter would have a flatter passband response and
a larger cutoff slope. But it would also introduce larger phase shift and cause the system to be unstable.

G*(w) = [H(jw)|* = (13)




(a) PD controller (b) PID controller

Figure 8: Trajectory visualization using PD or PID controller

Filter w. (Hz) 5 20 200
HD 30.16  27.58 27.1274
MSE 107.35 143.25 85.0783

Table 5: Comparison of Filter Cutoff Frequency

Metircs | w/o motor noise W motor noise
HD 12.05 13.94
MSE 93.39 101.95

Table 6: The performance difference when considering motor noise

C.3. The influence of motor noise

As we can see from table 6, the performance of the system remains almost the same even if we add motor noise,
which indicates the robustness of our system. The visualization of the two trajectories is also shown in Figure 7b
and Figure 8b.



